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Optical Communications  -  Vision and Mission

Vision:

To increase volume and timeliness of space data transfer,

to enable affordable virtual presence throughout the solar system.

Mission:

10-100 times higher data-rate,

 1/10 the aperture diameter,

less mass and less power consumption

…relative to current state-of-the-art.

Over the next 30 years to enhance the current communications

capability (1Mbps for Mars 05) by 30 dB (3 orders of magnitude)
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Data rate requirements for science and public outreach are factors of
 10 to 100 higher than can be provided by current communications technology
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Mission Challenges

• Approximately 40-70% of the spacecraft prime power is now allocated to the
communications system during peak communications period

• The percentage of the communications system dry mass increases from 2%
for Venus mission to >10% for Saturn and Neptune missions

• Antenna sizes vary from 1.5 to 3 meters

Current (RF) communications systems require significant spacecraft
resources:
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Communication Challenges

– Six (6) orders of magnitude range difference from LEO to end of solar system

– Very low signal strength

– Long round trip light time from 10’s of minutes to several hours

– Asymmetric data path

– Stressing thermal, radiation and shock environments

– Stressing pointing accuracy requirement for Optical Communications

– Communication signal also used for navigation

– Link availability due to atmospheric and orbit conditions

– Extremely weight, size and power limited  -  Need to reduce fraction of spacecraft

prime power and mass allocated to the communications system without sacrificing

communications performance
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Performance Projections

• X-band (8 GHz) - Current baseline capability
• Ka-band (32 GHz) communications (ready for infusion)

– 11.6 dB theoretical performance gain over X-band
– 4-6 dB enhancement available immediately; more later with improvements

• Optical Communications
– ~54 dB theoretical performance gain over X-band
– ~10 dB enhancement relative to X-band (assuming 0.3-m space aperture at

maximum Mars-Earth distance and 10-m ground telescope)
– Additional 10 dB growth potential over time as technology matures (more

efficient components and larger diameter ground telescope)
• These performance gains can be used to:

– Increase science data return,    or
– Reduce the impact (mass/power) on spacecraft
     (for a given data rate),     or
– Reduce required contact time with (and costs

of) ground reception station support

                    
 Benefit Example
 

A 3 dB gain can enable:
•  2x data return, or
•  50% power reduction*, or
•  50% reduction in GND tracking time* Assumes power consumption dominated by XMTR Power Amp
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Beam Divergence (Frequency) Effect

~ 100 Earth diameter
~ 0.1 Earth diameter

Earth

 RF Link Optical Link

Earth

Mars Mars
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Deep Space Optical Communications
Advantages (Deep Space)

• Optical frequency provides nearly 90 dB (109) advantage over X-band frequency for

identical antenna/telescope aperture size of both the space and ground terminals

• Aperture of a typical lasercomm flight terminal is approximately 10% of an RF system

(assuming ground receiver telescope aperture is 10-m in diameter, compared with a 70-m

DSN antenna)

• Current optical receivers are less efficient than RF receivers

• Current laser transmitters have less than 30% of efficiency of RF transmitters

• Additional few dB margin (nominal) is required for laser propagation through the

atmosphere

• 8-11 dB margin is available to provide over 10X higher data-rate based on the

same input DC power

• Over 10 dB margin can be recovered on top of the current advantage by

improving component efficiencies through technology developments



9H. Hemmati
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Optical communications: power and mass  -- reduction of ~40% vs.
X-band and aperture reduction of  over 80% vs. X-band or Ka-band technology
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Potential of  Laser-Communication Technology
(Example  -  Comparison with X-band)

Assumptions:
Link margin = 3 dB,  Elevation angle = 15°,  BER= 10-5

DC input power for both systems = 35 W
Optical:  25 W to transmitter and 10 W to acquisition and tracking subsystem
X-band:  12.5 W to transponder and 22.5 W to amplifier (55% efficiency, year 2000)

Gain, Losses & Efficiency   Optical Advantage (dB)
             (dB) Year 2000 Year 2010 Notes

X Optical   

Transmitter aperture gain (dB) 39.86 116.03 76.17 76.17 1.5 m X-band (incl. struc. losses) and 0.3 m Optical
Receiver aperture gain  (dB) 74.17 149.30 75.13 75.13 70 m X-band (incl. all losses) and 10 m Optical

Space loss (dB) -282.44 -372.90 -90.46 -90.46 Nominal range = 2.5 AU

Transmitter antenna losses (%) -1.00 -1.25 -0.25 0.00 Surface reflectance and struts, hot body noise
Transmitter beam-path losses (%) -1.00 -1.25 -0.25 0.00 Includes: filter, splitter, circulator, cables,  ...
Pointing losses (dB) -0.20 -2.00 -1.80 -1.40
Transmission path losses (%), -0.80 -1.74 -0.94 -0.94
Receiver antenna losses (%) -1.30 -3.67 -2.37 -1.40  X-band losses are already accounted for

Transmitter power (W) 10.97 4.77 -6.20 -3.60 Laser transmitter efficiency improvement
Data rate delivery (bps) 6.40E+04 1.50E+06 Optical provides > 20 times data-rate advantage
Required power/data rate (W.sec/bit) -214.44 -177.74 -36.70 -34.60 Receiver detector efficiency improvement

1 2 . 3 3 1 8 . 9 0 Net advantage (assuming night-time reception)

8 . 8 0 1 5 . 5 0 Net advantage (assuming day-time reception)
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Technical Challenges:

• Acquisition, tracking and pointing (ATP)
• Low power consumption (efficiency)
• Low mass

Technical Approach:

• Simplified yet robust ATP architectures & algorithms
• Smart, low power focal-plane-arrays for ATP
• Low noise, high quantum efficiency data detectors 
• Efficient and  compact solid-state laser transmitters 
• Very light-weight, thermally-stable optics & structures

Inclusion of Advanced Technologies

Optical Communications
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Design Drivers / Technology Development

Focal
Plane
Array

Platform

• Vibration environment 
   (S/C jitter) - unknown
• Deadband cycle
• Earth exposure time

• Type
• Array size
• Pixel size
• Noise
• Spectral band
• Field-of-view
• Dynamic range
• Sensitivity
• Readout rate
• Update rate
• Processing power
• Stray sun light
• Scattered transmit light
• Reliability
• SPE & SEP angles
• Acquisition time

EarthSpace

• Visibility
• Cloud cover
• Attenuation
• Elevation angle
• Sun angle
• Solar loading
• Turbulence
• Scattering

• Reflectance
• Albedo 
  variations
• Crescent size
• Motion

AtmosphereFine-
Pointing
Mirror

• Bandwidth
• Reaction
• Performance
• Reliability

• Radiation

Laser

• Efficiency
• Power vs.
  data rate
• Extinction
  ratio
• Reliability

Receiver
(Optics)

• Aperture size
• Field-of- view
• Xmt-Rcv
   isolation
• Sensitivity
• Duplex operation
• Thermal effects
• Optics contamination
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– Develop flight terminal engineering model (2002 - 2005)

– Conduct series of flight demonstrations from 2005 through 2010

• Validate high efficiency and moderate power laser transmitters

• Validate precision tracking and pointing mechanism to planetary

requirements

– Develop techniques for atmospheric effect mitigation (e.g. adaptive optics

and smart focal plane detector arrays) and validate in the optical R&D station

– Develop plans and technologies for 10 meter optical ground stations

infrastructure

Validation Strategy/Approach
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2000 2005 2010 2015

10-m Ground Receiver Infrastructure Ready1-m R&D Optical Station

• 10% Efficient Laser with < 1
Mbps modulation
• 30% Detector Quant. Effic.
• 1 urad pointing

• >20% efficient laser with >10
Mbps modulation
• 8 photons/bit detection
• 0.25 urad pointing
• 10-12 kg terminal

• 30% Efficient 10 W laser with
> 100 Mbps modulation
• 4 photons/bit detection
• 50 nrad pointing
• <7 kg  terminal

Mars
& Outer
Planetary

Neptune
Orbiter

Key Milestones to
be achieved

• Miniaturization
• Radiation Harden

Technology Roadmap



15H. Hemmati

Current Optical Comm Activities

• NASA Code R funded activities
– Next generation Optical Communications Demonstrator technologies

• Acquisition, Tracking and Pointing (ATP) for sub-micro-radian pointing of laser
beams to Earth

• Efficient laser components for near-Earth and deep space

• High bandwidth focal plane arrays and fine-pointing mirrors

• Sensors Web for future landers using retro-modulators for communications

• NASA Code Y funded activity (AIST NRA award)
– High rate communications in the rage of 1 to 10 Gbps from LEO-to-LEO or GEO-to-

ground

• NASA Code M funded activities
– Atmospheric Visibility Monitoring (AVM)

– Optical Communications  Telescope Laboratory (OCTL)

– Efficient coding and modulation

– Advanced concepts development, large aperture photon-bucket definition
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Current Optical Comm Activities, Continued…

•   NASA Code S funded activities

–ST-6 technology validation concept study (partnering with Ball Aerospace)

–Next generation Mars Lidar - providing flight-qualified lasers and detectors to a
laser mapper for safe landing / hazard avoidance during future Mars missions

•    DOD - MDA (Missile Defense Agency)

– Joint terminal development with TREX Enterprise (San Diego)

– 2.5 Gbps lasercomm demonstration from UAV (e.g. Predator) to ground

– 2.5 Gbps lasercomm demonstration from Plane (DC8) to ground
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ATP Technologies -  Innovation and Uniqueness

• Technology Innovation:
– Unified and simple ATP architecture for entire solar system
– Innovative integration and development of state-of-the-art components, subsystems

and algorithms to address unique deep space needs
• Which improve random and system noise and dynamic range
• To achieve laser beam pointing accuracy to the sub-microradian level
• While addressing > 35 AU Range, Minimal impact on S/C, Low Size, Weight

and Power

• Uniqueness of this technology:
– Unique to deep space optical links

• absolute and accurate sub-microradian pointing control from anywhere within the
solar system and beyond

• enables greater than an order magnitude improvement in data-rate delivery from
space to Earth
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Optical Communication Demonstrator 
(OCD, laboratory model)

Next Generation
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Low-Capability Lasercomm Terminals

ACLAIM
(A Combined Lasercomm and Imager

for Micro-spacecraft)

SCOPE
(Small Communications Optical

Package Experiment)
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2.5 Gbps Optical Comm Links Depicting 
  Data transmission from LEO-to-GEO

Objective:
Develop communications (in the range of 1 to 10 Gbps) and
acquisition, tracking and pointing technologies for lasercomm to
transmit science data from LEO-to-GEO or GEO-to-ground.
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UAV Downlink Demonstration  - Overview

> 1 Gbps
Optical
Downlink

Uplink
beacon

Optical Ground Station

Optical terminal
UAV

Downlink of science data at the rate of 1 to 2.5 Gbps
from a plane (DC8) and a UAV to ground
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LTES 
(Lasercomm Test & Evaluation Station)
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AVM
(Atmospheric Visibility Monitoring)

Set of three 25-cm diameter autonomous telescopes to measure atmospheric visibility

Table Mountain Facility (TMF) 
860 nm (1/3/00 to 6/30/00)
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OCTL
(Optical Communications Telescope Laboratory)

 

•  A 1-m telescope facility to track LEO Spacecraft, dedicated to lasercomm
•  Awarded 1-m telescope contract to Contraves  Brashear January of 2000
•  Telescope to be delivered Summer of 2002
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GOPEX (Galileo Optical Experiment) &
GOLD (Ground-to-Orbit Lasercom Demo)

Uplink to Galileo spacecraft 
at 6E9 m range

Uplink and downlink with 
ETS S/C in GEO-type orbit

Successful experiments with spacecrafts:
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Promise of Optical Comm 
Technology  over RF Systems

POWER

DATA-
TRANSMISSION
TIME

SIZE
MASS

RE COST

RF

Optical

X0.1

X0.1

Reference: ACBS Study, Published by SPIE 1996 & 1997
Performance is very much mission dependent
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Technology Needs

– Low-mass and low-thermal expansion telescopes
– Effective mitigation of sunlight and scattered light in the lasercomm terminal
– A complete set of robust ATP algorithms for the 0.01 to > 35 AU range and 50

to 250 nrad pointing jitter
– An end-to-end software model for ATP
– High efficiency, low-noise receivers capable of detecting better than 4 to 8

photons/bit detectivity
– High update rate (> 5 KHz) detector arrays
– High bandwidth (> 3 kHz) 2-axis fine-pointing mirrors
– High efficiency (> 20%), medium power, solid state lasers with 10’s of Mbps

modulation capability
– Development of efficient modulation and coding techniques
– Development of high transmittance (>90%), narrow (~ 0.1 nm) bandpass filters

at key laser wavelengths.
– Daytime adaptive optics for atmospheric effect mitigation
– Large aperture (>10 meter), low-cost (<$20 M) non image quality telescope with

~ 30 µrad field-of-view
– Multi-function architectures combining science imaging, laser altimeter

reception, and optical communications in a single instrument
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Summary

• Future Solar System missions need increased communications
performance to realize NASA’s solar system exploration goals

– Reduce impacts on host spacecraft (mass/power), or reduce Earth
station reception time (costs)

– Return more science data for a given mission investment

• Optical communications is less mature than RF (X-band and Ka-band),
but offers significantly more growth potential

– Could provide one or more orders of magnitude increase in data
returns for most outer planet missions

– Should be developed for flight demonstrations during this decade,
and begin operational infusion in the 2010-2012 timeframe
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Conclusion

•  Component efficiency improvements are now underway

•  Solutions to remaining technology challenges are being identified / developed

•  Flight demonstrations are being worked on

•  Development of a network of large aperture ground receivers are planned

lead to establishment of a credible technology making reliable 
operational deep-space laser-communication a viable option
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Additional Information
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Optical-Communications Roadmap

   01         02         03         04         05         06         07         08

BMDO / NASA UAV-to-Ground (> 1 Gbps)

NMP

Mars 07
> 5 Mbps
Demo from 
2.6 AU

> 0.1 Mbps

Ground Receivers
1-m Station
Completed (OCTL)

3.67-m Air-Force
Station Utilized

5 to 10 m
RCVR

HRDD (ACQ/TRK S/W, 20% Efficiency Laser)
TMOD (Low Noise and High Efficiency Receivers)

Near-EarthNear-Earth
Flight DemosFlight Demos

AIST (Code Y, LEO-GEO Breadboard Terminals)
MDA (Next Generation Brassboard Terminal)

Deep-SpaceDeep-Space
Flight DemosFlight Demos

Outer Planetary

TechnologyTechnology
DevelopmentDevelopment

ST8

Mars Technology  (Technologies for Mars 07 Demo)
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Optical ground station 

LEO

GEO

Near-Earth Applications
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ATP Technologies for Deep Space Missions

Laser Beacon tracking,
Earth Image Tracking

Earth-Moon Image Tracking
Star-Tracking with Inertial
Sensor Compensation

~1 to ~ 6 AU

< 1 AU
~6 to ~12 AU

> ~12 AUEarth-Moon Image Tracking
Star-Tracking with Inertial 
Sensor Compensation

Star-Tracking with Inertial 
Sensor Compensation
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Laser-
Communications

Hazard-Detection & 
Avoidance (for landing)

&Laser-Altimetry

High-Resolution
Science
Imaging

Multi-Functionality
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Systems Level Demonstrations

• Characterized beacon performance using 46.8 Km range mountain-to-mountain optical link from
  JPL’s Table Mountain Facility in Wrightwood, CA  to Strawberry Peak (SP)

• Demonstrated reduction in atmospheric turbulence induced
   irradiance fluctuations (fades) over 4 air-mass path   

 - observed 75-82% reduction in normalized variance
 -  theory predicted 87% reduction
 -  no fades observed with 6- and 8-beams

• Measured individual beam divergence of 300-380 mrad
   compared to design goal of 100 mrad
    - discrepancy in divergence is due to the multi-mode beam
     - transmitted power from TMF is 200 mW
     - expected average power at SP 1.02 nW for all 8-beams
     - received power at SP 1.57 - 2.32 nW 

• Submitted NTR on the multi-beam beacon
   assembly design

Normalized variances observed with 1, 2, 4, 6 and 8 beams

Showing typical spatial scans of single beacon beam performed by slewing TMF
telescope while monitoring beacon at SP.  
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Spatial Scan of beacon beam (06/29/00)  
 DEC scan with HA =00:00:49 
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• Estimated r0 from measured spot size on OCD
    - measured 80-96 mm 
    - implies 4-5 cm r0 for the 8-beam beacon
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•  Determined capacity increase for a 1% improvement in each of the ten listed physical parameters

Optical Channel Capacity

 

  

• Established the following implications :
    -  channel models considered have the same brick wall capacity limits as RF channel
    -  a 3-dB gap between Soft and Hard decision PPM channels
    -  gap between capacity and SOA includes 3dB due to coding and an additional 3 dB due to modulation
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Case 2 strong signal and background Gain fixed at 30

Case 3 weak signal strong background

Case 4 weak signal weak background G = APD gain;

F= excess noise factor

η = QE;
ns = mean signal photons;

nb = mean background photons

Is/Ib = surface/bulk leakage current

Ts = slot width; T = noise temperature; 
RL =  load resistor

- signal intensity is much more important than background noise
- quantum efficiency is the most important detector parameter
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Lightweight Low Thermal Expansion Telescopes

• All SiC telescope
•  30-cm primary mirror
•  Weight:  ~ 6 kg

Developed by SSG Inc. under
SBIR Phase II

Now developing a 3.5 Kg version 


